Analysis 1, Summer 2023

List 9

Integration by parts, area, volume of revolution

220. Fill in the missing parts of the table:

f =	$\sin(x)$	ln(x)	x^3			
$\mathrm{d}f =$	$\cos(x) dx$			$x \mathrm{d}x$	$\frac{\mathrm{d}x}{x}$	$\sin(x) dx$

221. Find the derivative of $2xe^{2x}$.

Integration by parts for indefinite integrals:

$$\int u \, dv = uv - \int v \, \mathrm{d}u.$$

- 222. Use integration by parts with u = 4x and $dv = e^{2x} dx$ to evaluate $\int 4xe^{2x} dx$.
- 223. Use integration by parts with $u = \ln(x)$ and dv = 1 dx to find $\int \ln(x) dx$.
- 224. Find the following indefinite integrals using integration by parts:

(a)
$$\int x \sin(x) dx$$

(c)
$$\int \frac{\ln(x)}{x^5} dx$$

(a)
$$\int x \sin(x) dx$$
 (c) $\int \frac{\ln(x)}{x^5} dx$ (e) $\int (4x+12)e^{x/3} dx$

(b)
$$\int x \cos(8x) dx$$

(d)
$$\int x^2 \cos(4x) \, \mathrm{d}x$$

(b)
$$\int x \cos(8x) dx$$
 (d) $\int x^2 \cos(4x) dx$ (f) $\int \cos(x)e^{2x} dx$

225. Calculate the following definite integrals using integration by parts:

(a)
$$\int_0^6 (4x+12)e^{x/3} dx$$

(c)
$$\int_0^1 t \sin(\pi t) dt$$

(b)
$$\int_{1}^{2} x \ln(x) \, \mathrm{d}x$$

$$(\mathrm{d}) \int_0^\pi x^4 \cos(4x) \, \mathrm{d}x$$

 $\gtrsim 226$. Prove that $\int_{1}^{\pi} \ln(x) \cos(x) dx = \int_{1}^{\pi} \frac{-\sin(x)}{x} dx$.

 $\gtrsim 227$. If g(0) = 8, g(1) = 5, and $\int_0^1 g(x) dx = 2$, find the value of $\int_0^1 x g'(x) dx$.

228. Try each of the following methods to find $\int \sin(x) \cos(x) dx$. (They are all po-

- (a) Substitue $u = \sin(x)$, so $du = \cos(x) dx$ and the integral is $\int u du$.
- (b) Substitue $u = -\cos(x)$, so $du = \sin(x) dx$, and the integral is $\int -u du$.
- (c) Substitute $\sin(x)\cos(x) = \frac{1}{2}\sin(2x)$, so the integral is $\frac{1}{2}\int\sin(2x)\,\mathrm{d}x$.
- (d) Do integration by parts with $u = \sin(x)$ and $dv = \cos(x) dx$.

- (e) Do integration by parts with $u = \cos(x)$ and $dv = \sin(x) dx$.
- $\stackrel{\sim}{\bowtie}$ (f) Compare your answers to parts (a) (e).
- 229. Find $\int 4x \cos(2-3x) dx$ and $\int (2-3x) \cos(4x) dx$.
- 230. Give the area of each of the following shapes:

The area between two curves of the form y = f(x) is $\int_{\text{left}}^{\text{right}} (\text{top}(x) - \text{bottom}(x)) dx$.

The area between two curves of the form x = g(y) is $\int_{\text{bottom}}^{\text{top}} (\text{right}(y) - \text{left}(y)) dy$.

- 231. Find the area of the region bounded by $y = e^x$, y = x + 5, x = -4, and x = 0 (that is, the area between $y = e^x$ and y = x + 5 with $-4 \le x \le 0$).
- 232. What is the area of the region bounded by the curves $y = 20 x^4$ and y = 4?
- 233. Find the area of the region bounded by the curves $x = y^2$ and $x = 1 + y y^2$.
- 234. Calculate the area of...
 - (a) the region bounded by the curves $y = x^2, y = 4x, x = 2, x = 3$.
 - (b) the region bounded by the curves $y = x^2, y = 4x, y = 1, y = 4$.
 - (c) the region bounded by the curves $y = x^2$ and y = 4x.

The volume of a solid can be calculated as

$$V = \int_{\text{left}}^{\text{right}} \left(\text{cross-section area} \right) \mathrm{d}x = \int_{\text{bottom}}^{\text{top}} \left(\text{cross-section area} \right) \mathrm{d}y.$$

For a "solid of revolution", the "disk method" uses

$$\pi \cdot (\text{radius})^2$$

as the cross-sectional area.

- 235. Find the volume of the solid formed by revolving (rotating) the region bounded by $y = 1 x^2$ and y = 0 around the x-axis.
- 236. Find the volume of the solid formed by revolving the domain

$$\{(x,y) : x \ge 0, 2x \le y \le 6\}$$

around the y-axis.

For Winter 2023, you will not be asked about solids like the ones in Tasks 237 and 238.

 $\gtrsim 237$. For the solid formed by rotating the region from Task 234(c) around the x-axis,

- (a) Set up an integral $\int \dots dx$ for the volume using the washer method.
- (b) and evaluate this integral.

 $\gtrsim 238$. For the solid formed by rotating the region from Task 234(c) around the y-axis,

- (a) set up an integral $\int \dots dy$ for the volume using the washer method.
- (b) and evaluate this integral.

239. Calculate each of the following integrals.

Some* require substitution, some** require parts, and some do not need either.

$$(a) \int (x^4 + x^{1/2} + 4 + x^{-1}) \, dx \qquad (n) \int t \ln(t) \, dt$$

$$(b) \int \left(x^2 + \sqrt{x} + \frac{\ln(81)}{\ln(3)} + \frac{1}{x}\right) \, dx \qquad (o) \int \frac{3t - 12}{\sqrt{t^2 - 8t + 6}} \, dt$$

$$(c) \int (t + e^t) \, dt \qquad (p) \int \frac{1}{\sqrt{x - 1}} \, dx$$

$$(d) \int (t \cdot e^t) \, dt \qquad (q) \int \frac{x}{\sqrt{x - 1}} \, dx$$

$$(e) \int (t^3 + e^{3t}) \, dt \qquad (r) \int y^3 \, dy$$

$$(g) \int \frac{x}{x^2 + 1} \, dx \qquad (t) \int x \sin(2x) \, dx$$

$$(h) \int \frac{x}{x^2 - 1} \, dx \qquad (u) \int x^3 \sin(2x^4) \, dx$$

$$(i) \int \frac{1}{x^2 - 1} \, dx \qquad (i) \int x^7 \sin(2x^4) \, dx$$

$$(j) \int \frac{1}{x^2 - 1} \, dx \qquad (x) \int e^{5x} \cos(e^{5x}) \, dx$$

$$(\ell) \int \frac{y}{\sqrt{y^2 + 1}} \, dy \qquad (z) \int e^{8 \ln(t)} \, dt$$

^{*} g, h, m, o, p, q, u, x. ** d, f, ℓ , n, t, v, y.