List 9

Integration by parts, area, volume of revolution

220. Fill in the missing parts of the table:

$f=$	$\sin (x)$	$\ln (x)$	x^{3}			
$\mathrm{~d} f=$	$\cos (x) \mathrm{d} x$			$x \mathrm{~d} x$	$\frac{\mathrm{~d} x}{x}$	$\sin (x) \mathrm{d} x$

221. Find the derivative of $2 x e^{2 x}$.

Integration by parts for indefinite integrals:

$$
\int u d v=u v-\int v \mathrm{~d} u .
$$

222. Use integration by parts with $u=4 x$ and $\mathrm{d} v=e^{2 x} \mathrm{~d} x$ to evaluate $\int 4 x e^{2 x} \mathrm{~d} x$.
223. Use integration by parts with $u=\ln (x)$ and $\mathrm{d} v=1 \mathrm{~d} x$ to find $\int \ln (x) \mathrm{d} x$.
224. Find the following indefinite integrals using integration by parts:
(a) $\int x \sin (x) \mathrm{d} x$
(c) $\int \frac{\ln (x)}{x^{5}} \mathrm{~d} x$
(e) $\int(4 x+12) e^{x / 3} \mathrm{~d} x$
(b) $\int x \cos (8 x) \mathrm{d} x$
(d) $\int x^{2} \cos (4 x) \mathrm{d} x$
(f) $\int \cos (x) e^{2 x} \mathrm{~d} x$
225. Calculate the following definite integrals using integration by parts:
(a) $\int_{0}^{6}(4 x+12) e^{x / 3} \mathrm{~d} x$
(c) $\int_{0}^{1} t \sin (\pi t) \mathrm{d} t$
(b) $\int_{1}^{2} x \ln (x) \mathrm{d} x$
(d) $\int_{0}^{\pi} x^{4} \cos (4 x) \mathrm{d} x$
226. Prove that $\int_{1}^{\pi} \ln (x) \cos (x) \mathrm{d} x=\int_{1}^{\pi} \frac{-\sin (x)}{x} \mathrm{~d} x$.

2 227. If $g(0)=8, g(1)=5$, and $\int_{0}^{1} g(x) \mathrm{d} x=2$, find the value of $\int_{0}^{1} x g^{\prime}(x) \mathrm{d} x$.
228. Try each of the following methods to find $\int \sin (x) \cos (x) \mathrm{d} x$. (They are all po-
ssible.)
(a) Substitue $u=\sin (x)$, so $\mathrm{d} u=\cos (x) \mathrm{d} x$ and the integral is $\int u \mathrm{~d} u$.
(b) Substitue $u=-\cos (x)$, so $\mathrm{d} u=\sin (x) \mathrm{d} x$, and the integral is $\int-u \mathrm{~d} u$.
(c) Substitute $\sin (x) \cos (x)=\frac{1}{2} \sin (2 x)$, so the integral is $\frac{1}{2} \int \sin (2 x) \mathrm{d} x$.
(d) Do integration by parts with $u=\sin (x)$ and $\mathrm{d} v=\cos (x) \mathrm{d} x$.
(e) Do integration by parts with $u=\cos (x)$ and $\mathrm{d} v=\sin (x) \mathrm{d} x$.
© (f) Compare your answers to parts (a) - (e).
229. Find $\int 4 x \cos (2-3 x) \mathrm{d} x$ and $\int(2-3 x) \cos (4 x) \mathrm{d} x$.
230. Give the area of each of the following shapes:
(a)

(c)

The area between two curves of the form $y=f(x)$ is $\int_{\text {left }}^{\text {right }}(\operatorname{top}(x)-\operatorname{bottom}(x)) \mathrm{d} x$.
The area between two curves of the form $x=g(y)$ is $\int_{\text {bottom }}^{\text {top }}(\operatorname{right}(y)-\operatorname{left}(y)) \mathrm{d} y$.
231. Find the area of the region bounded by $y=e^{x}, y=x+5, x=-4$, and $x=0$
(that is, the area between $y=e^{x}$ and $y=x+5$ with $-4 \leq x \leq 0$).
232. What is the area of the region bounded by the curves $y=20-x^{4}$ and $y=4$?
233. Find the area of the region bounded by the curves $x=y^{2}$ and $x=1+y-y^{2}$.
234. Calculate the area of...
(a) the region bounded by the curves $y=x^{2}, y=4 x, x=2, x=3$.
(b) the region bounded by the curves $y=x^{2}, y=4 x, y=1, y=4$.
(c) the region bounded by the curves $y=x^{2}$ and $y=4 x$.

The volume of a solid can be calculated as

$$
V=\int_{\text {left }}^{\text {right }}(\text { cross-section area }) \mathrm{d} x=\int_{\text {bottom }}^{\text {top }}(\text { cross-section area }) \mathrm{d} y .
$$

For a "solid of revolution", the "disk method" uses

$$
\pi \cdot(\text { (radius })^{2}
$$

as the cross-sectional area.
235. Find the volume of the solid formed by revolving (rotating) the region bounded by $y=1-x^{2}$ and $y=0$ around the x-axis.
236. Find the volume of the solid formed by revolving the domain

$$
\{(x, y): x \geq 0,2 x \leq y \leq 6\}
$$

around the y-axis.

For Winter 2023, you will not be asked about solids like the ones in Tasks 237 and 238.
$\Sigma 237$. For the solid formed by rotating the region from Task 234(c) around the x-axis,
(a) Set up an integral $\int \ldots \mathrm{d} x$ for the volume using the washer method.
(b) and evaluate this integral.
238. For the solid formed by rotating the region from Task 234(c) around the y-axis,
(a) set up an integral $\int \ldots \mathrm{d} y$ for the volume using the washer method.
(b) and evaluate this integral.
239. Calculate each of the following integrals.

Some* require substitution, some** require parts, and some do not need either.
(a) $\int\left(x^{4}+x^{1 / 2}+4+x^{-1}\right) \mathrm{d} x$
(n) $\int t \ln (t) \mathrm{d} t$
(b) $\int\left(x^{2}+\sqrt{x}+\frac{\ln (81)}{\ln (3)}+\frac{1}{x}\right) \mathrm{d} x$
(o) $\int \frac{3 t-12}{\sqrt{t^{2}-8 t+6}} \mathrm{~d} t$
(c) $\int\left(t+e^{t}\right) \mathrm{d} t$
(p) $\int \frac{1}{\sqrt{x-1}} \mathrm{~d} x$
(d) $\int\left(t \cdot e^{t}\right) \mathrm{d} t$
(q) $\int \frac{x}{\sqrt{x-1}} \mathrm{~d} x$
(e) $\int\left(t^{3}+e^{3 t}\right) \mathrm{d} t$
(r) $\int y^{3} \mathrm{~d} y$
$\Delta(\mathrm{f}) \int\left(t^{3} \cdot e^{3 t}\right) \mathrm{d} t$
$(\mathrm{s}) \int y(y+1)(y-1) \mathrm{d} y$
(g) $\int \frac{x}{x^{2}+1} \mathrm{~d} x$
(t) $\int x \sin (2 x) \mathrm{d} x$
(h) $\int \frac{x}{x^{2}-1} \mathrm{~d} x$
(u) $\int x^{3} \sin \left(2 x^{4}\right) \mathrm{d} x$
(i) $\int \frac{x^{2}-1}{x} \mathrm{~d} x$ $\hat{v}(\mathrm{v}) \int x^{7} \sin \left(2 x^{4}\right) \mathrm{d} x$
(j) $\int \frac{1}{x^{2}-1} \mathrm{~d} x$ $\hat{v}(\mathrm{w}) \int \sin \left(2 x^{4}\right) \mathrm{d} x$
$\mathcal{*}(\mathrm{k}) \int \frac{1}{x^{2}+1} \mathrm{~d} x$
(x) $\int e^{5 x} \cos \left(e^{5 x}\right) \mathrm{d} x$
($\ell) \int \frac{y}{\sqrt{y^{2}+1}} \mathrm{~d} y$
(y) $\int x^{5} \cos (x) \mathrm{d} x$
$\star(\mathrm{m}) \int \frac{1}{\sqrt{y^{2}+1}} \mathrm{~d} y$
(z) $\int e^{8 \ln (t)} \mathrm{d} t$

$$
{ }^{*} \mathrm{~g}, \mathrm{~h}, \mathrm{~m}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{u}, \mathrm{x} . \quad{ }^{* *} \mathrm{~d}, \mathrm{f}, \ell, \mathrm{n}, \mathrm{t}, \mathrm{v}, \mathrm{y} .
$$

